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Abstract 
 

Fuzzy rule interpolation is a reasoning technique 
that is designed to cope with sparse rule bases. The 
existing methods suffer from either one of the 
following deficiencies: problem of abnormal 
conclusion and high computational cost. This paper 
introduces a new interpolation algorithm that 
eliminates these shortcomings. It is proven that the 
method is closed over convex and normal fuzzy (CNF) 
sets. Characteristics of the proposed method are also 
investigated. 
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1. Introduction 
 

Fuzzy rule interpolation is a technique invented for 
handling sparse rule bases, where classical inference 
methods of fuzzy control (Zadeh, Mamdani and Sugeno) 
are not suitable. 

The first published approach [2] proposed by Kóczy 
and Hirota can result in abnormal fuzzy set under certain 
configuration of the inputs. Although several different 
methods were introduced so far inspired also by this 
defect [1,4], none of them could maintain the 
advantageous complexity property of the KH approach 
still recent past. In [9] a modification of the KH fuzzy 
rule interpolation method was presented for eliminating 
the problem of abnormality. For brevity, we will refer to 
this as MACI (Modified Alpha Cut based Interpolation) 
method. The purpose of this paper is to characterize and 
analyze the MACI method. 
 

2. Fuzzy Rule Interpolation 
 

The introduction of fuzzy rule interpolation methods 
was originally motivated by the will of reducing the 
number of the rules and, subsequently, the complexity of 
the resulting fuzzy system by means of the omission of 

redundant rules, which may result in sparse rule base [2] 
KH method was the first published fuzzy rule 

interpolation. This technique is based on the cut−α  
distances of convex and normal fuzzy sets. The method 
generates the fuzzy conclusion by means of its cuts−α  
based on the Extension and the Resolution Principles.  

The simplest approach based on this idea is the linear 
KH interpolation, which takes into account two (closest) 
rules flanking the actual observation and calculates the 
conclusion between the corresponding rule consequents 
as  
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where iA  and iB  ( 2,1=i ) denote antecedents 
neighboring the observation ∗A  and corresponding 
consequents, respectively, subscripts L  and U  in C  
refer to the minimum and maximum of respective 

cuts−α , and { }ULCdC ,),,0(: ∈+∞→ℜ×ℜ  is an 
appropriate distance function (cf. [3]). This should be 
calculated for every important cut, e.g. in the case of 
triangular and trapezoidal shaped membership functions 

0=α  and 1 (see [5]).  
The linear KH method, although being 

computationally efficient for practical piecewise linear 
shaped fuzzy sets, has the shortcoming that it can 
produce abnormal conclusion (Figure 1). 

 

 
Figure 1. Abnormal conclusion produced by the KH method 
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In order to alleviate this problem condition was 
imposed by e.g. Kóczy and Kovács [5], or Shi and 
Mizumoto [6] so as to yield a normal fuzzy set. The 
application of these condition leads to restriction of the 
shape of the rules and of the observation that might be an 
obstacle of practical applications in some contexts. Other 
authors proposed conceptually different methods, but 
these have the drawbacks of immense computational 
need. 

 
3. The MACI Method 

 
The MACI method to be presented modifies the KH 

fuzzy rule interpolation method in that manner, that the 
new fuzzy rule interpolation method should always give 
fuzzy set as conclusion.  

We recall that the KH fuzzy rule interpolation method 
determines the conclusion by its cuts−α . The 
conditions concerning the conclusion ensuring its 
normality and convexity can be characterized as follows 
in terms of the cuts−α . It should be satisfied for every 

]1,0[21 ∈〈αα  that the support of cut−α  should 
contains the support of cut−2α  (convexity). The 
normality is guaranteed by the premise of the KH fuzzy 
rule interpolation method, namely, that it is suitable for 
CNF sets. The above condition can be expressed as  

∗∗∗∗ ≤≤≤ 1221 maxmaxminmin αααα BBBB  (2) 
for all ].1,0[21 ∈〈αα  

We use vector description of fuzzy sets (Yam 1997; 
[10]) to solve the abnormality problem. A piecewise 
linear fuzzy set is described by vector of its characteristic 
points. We can split a convex fuzzy set into two parts: the 
left and the right flank. They are connected at the 
reference point 0a , which is the most important point of 
the fuzzy set with the highest membership degree. The 
reference point is usually the center of the core (see also 
Figure 2). The points of the left (right) flank and are 
index by descending (ascending) integer from 0.  

 

 
Figure 2. Abnormal conclusion produced by the KH method 

 
To capture the main idea of the MACI method, first, 

the simplest case is presented, where isosceles triangular 
shaped fuzzy sets and single dimensional input space are 

considered.  
 

A. The Skeleton of the MACI Method 
Triangular fuzzy set A  can be described with vector 

representation as { } .,, 101 aaaA −=  101 ,, aaa−  should 
satisfy to ensure the normality of A . Henceforth, 
without the loss of generality, we present the algorithm 
for the right flank (for the analogous left flank, see [7]), 
which is represented by the vector 

[ ]Taa 10=a   (3) 
Let us suppose further, that two fuzzy rules are given 

as 11 BA →  and 22 BA →  with the observation 
located in between 1A  and 2A .  

The conclusion according to the original cut−α  
based KH fuzzy rule interpolation method by means of 
the vector representation form can be expressed (for the 
right flank) as: 

22122 )( ΛbIbΛIIb +−=∗  (4) 
where 2I  is the 2 by 2 identity matrix and  

.1,0,],[
12

1
10 =

−
−==

∗
k

aa
aa

kk

kk
kλλλΛ   (5) 

 

 
Figure 3. The representation of the right slope of consequents 

,, 21 BB and the conclusion ∗B  (satisfying the CNF 
condition) as the values of their characteristic points. 

 
Figure 3 depicts vectors ,, 21 bb  and ∗b  

(representing the right flank of fuzzy sets ,, 21 BB  and 
∗B ) in the two dimensional space 10 ZZ × , where the 

coordinates are the values of their vector representation. 
Because of the premises of the original KH fuzzy rule 
interpolation method ,21 kkk aaa 〈〈

∗  the fractions 
)1,0( =kkλ  are nonnegative numbers in unit the interval. 

Hence the location of ∗B  must be in the rectangle 
drawn by the thin lines in figure 3. In order to fulfill (2) 
the coordinates of the conclusion ∗B  should satisfy 

.10
∗∗ ≤ bb  That is, it should be above the straight line 

10: zzl = . If the rectangular is crossed by the line l than 
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there is always a chance for abnormal conclusion. The 
whole rectangle is above the line l if the sets 1B  and 2B  
overlap. 

The essential idea of the MACI method is the 
transformation of the points 1B , 2B  in another 
coordinate system where the abnormality can be 
excluded. In this case axis 0Z  is substituted by the 
straight 10: zzl =  and axis 1Z  remains unchanged. 
Coordinates of 1B  and 2B  are nonnegative in the new 
coordinate system. The coordinates of the conclusion are 
computed in the transformed coordinate system that 
ensures that it will never be under the straight l. Then we 
transform back the resulting conclusion to the original 
coordinate system. The fulfillment of inequality 

.10
∗∗ ≤ bb  is ensured by restricting the search for the 

conclusion to the area bounded by the straight lines 1Z  
and l. 

Because the lack of space we briefly resume the steps 
of the transformation. For further details on the 
coordinate transformation we refer to [7]. 
The transformation matrix describes the above change of 
axis can be defined as 










−
=

11
02T             (6) 

The transformed conclusion is calculated based on 
(4) (superscript prime denotes the vectors in the 
transformed space). 

21)(' bIΛbIΛIb ′+′−=∗            (7) 
The premises ensure that the new coordinates are 

nonnegative numbers. Finally, using the inverse of matrix 
T, we can transform back the conclusion.  

Analogous method can be applied for the left flank 
(see [7]). Note that due to the construction, the left and 
the right flank are connected, and the coordinates of core 
do not differ from the one by the original KH method. 
 
A.1 The Generalizations of the MACI Method 

The above described algorithm can be carried over for 
arbitrary piecewise linear CNF sets. Naturally, with the 
increasing number of characteristic points, the coordinate 
transformation (i.e. the transformation matrix T}) 
becomes more complicated. As a consequence, the 
computational cost also increases proportionally. 

The coordinate axes are now 0Z ,…, nZ , where n is 
the number of the characteristic points in the right flank. 
(Here we only present the algorithm for the right flank). 
The conclusion should fulfill the condition (2) changes to 

[ ]njibb ji ,0∈≤∀≤ ∗∗ . This can be ensured by changing 

the axis iZ  for the straight iZ ′  defined as 

( ) [ ]{ }nimlzzzzZ mlnii ,,,|,, ∈==′ l .     (8) 
Hence 0Z ′  is the straight line satisfying 

[ ]njizz ji ,0, ∈= , while nZ ′  remains unchanged. 
The transformation matrix is then 
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For more details see [7]. 
Further, using the same procedure as in the two 

dimensional case, we obtain the transformed conclusion 
as 

kkkkk 21
'

)1( bbb ′+′−=∗ λλ ,          (10) 
 

 
Figure 4. A case where MACI resolves the abnormality 

problem generated by KH method 
where kλ  are as in (5) with range [ ]nk ,0∈ . Finally, by 
means of the inverse matrix of (9) we end up with the 
final conclusion. 
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Summarizing the above the following theorem can be 
stated: 
 
Theorem 3.1 [7] The MACI method described so far 

always gives CNF set as conclusion. 
 

In Figure 4 depicts a situation where the MACI 
method corrects the abnormal conclusion of the KH 
method.  

In the case of piecewise linear membership function 
the breakpoint level of the fuzzy set in the input space 
can be different from that of one the output space. In (10) 
the coefficients kλ  correspond to the kth coordinate of 
the antecedents and the observation, but the calculated 
value corresponds to the kth coordinate of the conclusion. 
So, for clarity, a common breakpoint level set should be 
determined for both spaces, which is the union of 
(perhaps different) breakpoint level fuzzy sets for each 
variable. As an example see Figure 5. 

 

 
Figure 5. Determination of characteristic points  

 
By increasing the nodes in the distribution of range 

[0,1] one can get finer result for the required conclusion. 
For arbitrary continuous (convex and normal) 
membership function the value of the conclusion can be 
approximated by increasing ∞→n . 

Multi-variable antecedent case can be handled 
analogously as the transformation described so far affects 
only the consequent part. Common combined antecedent 
fuzzy sets (and observation) can be calculated from the 
corresponding antecedents (observation) of each variable 
using Minkowski-type distance, where the weights are 
identically one (w=1), in order to preserve the linearity of 
the fuzzy rule interpolation method. Hence, for example, 
the coordinates of the common combined observation 

can be calculated as ∑ =
= r

i ikk a
r

a
1

** 1
, where r is the 

number of variables, and *
ija is the jth coordinate of the 

observation of the ith variable. 
The MACI algorithm can further be generalized by 

taking more than two rules into account for the 
determination of the conclusion. Farther an antecedent of 

a rule is from the observation less significant its role 
plays the corresponding consequent in the determination 
of the conclusion. Hence, each coordinate values are 
weighted with the reciprocal of the fuzzy distance of the 
appropriate characteristic points. It can be shown that this 
general approach is behaves as universal approximator in 
the set of continuous function with respect to the 
supremum norm. This issue was addressed in [8]. 
 

4. Conclusions 
 

In this paper a new technique for fuzzy rule 
interpolation has been presented. It is originated from the 
first published α -cut based fuzzy rule interpolation, and 
it was proposed to combine the advantageous complexity 
behavior of the original KH approach and at the same 
time alleviate the disadvantage that for certain 
configuration it produces abnormal conclusion. 
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